Какие группы животных освоили активный машущий полет. Птицы третья группа животных, освоивших активный полет

В истории Земли всего три группы позвоночных животных сумели освоить воздушное пространство. Это птицы, летучие мыши и птерозавры. Летающие ящеры вымерли 65 миллионов лет назад в мезозойскую эру, оставив ученым разгадывание тайны своей виртуозной способности к полету. Что же известно современной науке о птерозаврах?

Автор первой публикации о птерозаврах, итальянский ученый XVIII века Козимо Коллини, приписал найденные в карьерах Баварии останки неизвестному морскому существу. (Позже другие исследователи относили их к летучим мышам и птицам.) Загадка разрешилась уже в начале XIX века, когда стало ясно, что это особая группа рептилий, освоивших оригинальный способ полета при помощи кожной мембраны, натянутой к сильно удлиненному пальцу руки и служившей крылом.

Самые древние из известных науке птерозавров обитали в конце триасового периода, примерно 210 миллионов лет назад, в одно время с сухопутными родственниками - динозаврами. Их объединяют в семейства эудиморфодонтид и диморфодонтид. Тела этих древних существ были хорошо приспособлены для полета. Полые тонкостенные кости образовывали облегченный скелет, длинные узкие крылья помогали взмывать в небо. Крупный мозг, занимавший весь соответствующий отдел черепа, развитое чувство равновесия и ориентации, отличное зрение способствовали искусному, маневренному полету. Без сомнения, они были опасными хищниками и зоркими охотниками, способными выслеживать и хватать добычу, будь то рыба, ящерица или насекомое, из самых разных положений. Эти животные обладали всеми характерными чертами, присущими их более поздним сородичам, и широко распространились по Земле: остатки древних птерозавров находят в Европе, Гренландии , Центральной Америке . Их совершенство говорит о длительной эволюции и многочисленных предшественниках, следы которых от нас, к сожалению, скрыты. С точки зрения систематики всех птерозавров разделяют на два подотряда: рамфоринхоидов и птеродактилоидов. Первые, обитавшие в триасовом и юрском периодах, предшествовали вторым, хотя некоторое время и пересекались с ними во времени.

Птеранодон, Северная Америка, 80 миллионов лет назад
Летающие ящеры, появившиеся в меловом периоде, отличались от предшественников крупными размерами и особой техникой полета. Их территорией были морские проливы и океанские просторы, поэтому они умели летать долго и на большие расстояния, используя планирование. Птеранодоны с размахом крыльев 7,3 метра царили в воздухе. Они охотились за рыбой, выхватывая ее из воды на большой скорости. Нередко сородичи устраивали драки, пытаясь отобрать друг у друга добычу. Главное оружие - тяжелые челюсти, способные нанести серьезные увечья противнику, а защитой служил костный панцирь на груди.

Главная отличительная черта птерозавров - конечно же, умение летать. Они освоили активный полет, то есть махали крыльями, чтобы взлетать и удерживаться в воздухе. Как показала эволюция, осуществить такой полет можно различными способами, а потому летательный аппарат этих животных особенный, непохожий на птичий и мышиный. Два отдела представляют в нем особый интерес - это руки-крылья и хвост-руль. Плоскость крыла образована большой кожной перепонкой (брахиопатагиумом), натянутой, как уже упоминалось, между телом и сильно удлиненным четвертым пальцем кисти, а также кожной перепонкой поменьше (пропатагиумом), расположенной между плечом и предплечьем. Пропатагиум поддерживался палочковидной костью - птероидом, представлявшем собой окостенение мышцы, идущей вдоль переднего края этой кожной складки. Натяжение мышцы поднимало пропатагиум, что позволяло изменять аэродинамические свойства крыла. В крыле рамфоринхоидов была еще одна перепонка - уропатагиум, натянутая между задними конечностями и проходившая под хвостом. Вероятно, с ее помощью, если поджать хвост, птерозавр мог притормаживать, заходя на посадку.

Кожная перепонка летающих рептилий представляла собой удивительный материал, сложный и практичный, словно созданный неизвестным инженером с учетом всех летных характеристик. Основу его составляли ориентированные определенным образом эластичные волокна (актинофибрилы), каждое толщиной примерно 0,05 миллиметра. За их счет перепонка, будучи расправленной, туго натягивалась. В передней части брахиопатагиума волокна располагались почти параллельно «крыловому» пальцу, дальше назад их угол наклона к пальцу увеличивался. Ближе к краю перепонки появлялись дополнительные вставочные актинофибрилы, которые расправлялись только при полном раскрытии крыла, а в покое собирались в складки наподобие веера. К заднему краю крыла волокна подходили почти под прямым углом, что обеспечивало его жесткость в полете. Такая структура делала перепонку выпуклой вверху, создавая аэродинамический профиль крыла, необходимый для возникновения подъемной силы. Также ее пронизывала густая сеть кровеносных сосудов, служивших, возможно, для терморегуляции, когда тепло от тела распределялось на большую площадь перепонки, где быстрее рассеивалось.

У древних птерозавров был очень длинный хвост, состоящий иногда из 40 позвонков. Первые 5-6 были нормально развиты и подвижны, а последующие сильно удлинены и снабжены в несколько раз более длинными отростками. Эти отростки переплетались между собой, обеспечивая полную жесткость хвоста в полете. Хвост в основном опускался и поднимался, и только передняя его часть, свободная от «плетенки», могла двигаться влево и вправо. В полете хвост служил рулем: его жесткость была необходима при внезапных сменах направления, а функцию рулевой лопасти играла кожистая ромбовидная складка на кончике.

Активный полет птерозавров был возможен только при достижении ими достаточно высокого уровня метаболизма, а это - аргумент в пользу их теплокровности. Подтверждение этого - наличие густого волосяного покрова на теле и крыльях, который предотвращал потерю метаболического тепла, ведь за счет летательной перепонки площадь поверхности тела рептилий увеличивалась, а значит, увеличивался и расход тепла. У рамфоринхов мех был коротеньким - 2-3 миллиметра, а сордес носил шубку шестимиллиметровой толщины. Теплокровность давала еще одно преимущество птерозаврам. Вдыхаемый ими воздух нагревался и подавался в обширные воздушные мешки, занимавшие полости трубчатых и других костей, включая позвонки. Это еще больше увеличивало их воздушную «плавучесть».

Будучи прибрежно-морскими охотниками за рыбой, птерозавры проводили над водоемами большую часть времени. Садились ли они на воду и хорошо ли плавали? Сегодня в этом не сомневаются. Другой вопрос: могли ли они глубоко нырять за рыбой наподобие современных веслоногих птиц? Это вряд ли, учитывая, что крылья птерозавров, в отличие от птичьих, полностью не складывались, и растопыренные передние конечности с натянутой летательной перепонкой сильно тормозили движение птерозавров в воде, использовать же крылья как органы подводного движения было невозможно. Более того, птерозавры не могли нырять сколько-нибудь глубоко из-за малого удельного веса, виной чему их полые кости. По крайней мере у некоторых ящеров между пальцами стоп имелась перепонка, как у современных водоплавающих. Вероятно, они работали лапами, отдыхая на поверхности воды, а чтобы взлететь - выплывали на гребень волны.

Кецалькоатль, Северная Америка, 65,5 миллиона лет назад
Птерозавры из семейства аждархид безраздельно господствовали в воздушном пространстве Земли в конце мелового периода. Входившие в это семейство кецалькоатли были самыми последними представителями летающих ящеров и самыми гигантскими. Размах их крыльев составлял 10 метров, шея была длиной три метра, а череп - два метра. Благодаря полым костям ящер весил всего 130 килограммов. Тем не менее кажется невероятным, что такое большое животное поднималось в воздух и планировало, непонятно также, как оно отдыхало, передвигалось по земле и охотилось. Кецалькоатли обитали в глубине материка и, вероятно, питались пресноводной рыбой, мелкими рептилиями и млекопитающими.

В юрском периоде появились новые семейства птерозавров - птеродактилоиды, которые в течение 30 миллионов лет конкурировали с древними и в итоге вытеснили их. Кроме птеродактиля, птеранодона и орнитохейра в юрском и меловом периодах Землю населяли еще два десятка видов, своеобразных и специализированных для различных экологических задач. Механизм полета у них был другой: рамфоринхоиды летали более маневренно, используя хвост как балансир при поворотах, птеродактилоиды больше планировали. Видимо, с изменением способа полета и связаны основные изменения их анатомии. Птерозавры нового поколения располагали более совершенным дыхательным аппаратом, коротким хвостом, а также системой, еще более увеличивавшей жесткость позвоночника: длинной шеей со сросшимися в особую кость передними позвонками (нотариум) и сложным крестцом из 6-10 позвонков. У крупных птерозавров отсутствовала нижняя часть летательной перепонки - уропатагиум, и задний край брахиопатагиума крепился к костному тяжу на конце хвоста, образованному видоизмененными хвостовыми позвонками. Подъем и опускание хвоста изменяли угол наклона задней части брахиопатагиума, который мог функционировать как «закрылки», гасящие скорость во время приземления.

Ярким представителем нового типа птерозавров стал птеранодон, обитавший в морских проливах и на океанских берегах Североамериканского континента. При семиметровом размахе крыльев весил этот ящер всего 16,6 килограмма. Развивая максимальную скорость 50 км/ч, он планировал лучше, чем современные альбатросы, благодаря длинным узким крыльям и удерживался на лету при восходящем потоке скоростью всего 3,6 км/ч.

К середине мелового периода, 90 миллионов лет назад, разнообразие птерозавров уменьшилось, и на Земле осталось единственное семейство аждархид. Оно состояло из очень крупных особей, особенно к концу своего господства. Летающих гигантов такого размера Земля не знала ни до них, ни после. Беззубые, длинношеие рептилии безраздельно царили в прибрежных районах Лавразии и Гондваны в течение последующих 25 миллионов лет. Последние из аждархид - кецалькоатль, хацегоптерикс и арамбургиана - достигли колоссальных размеров. Размах крыльев кецалькоатля достигал 10 метров, хацегоптерикса - 12 метров. Когда в 1971 году кости кецалькоатля обнаружили на территории Техаса , ученые усомнились в его способности летать. Загадку удалось разрешить с помощью эксперимента, создав модели ящера в натуральную величину. Ученые потерпели множество неудач, пока путем проб и ошибок не усовершенствовали конструкцию механического птерозавра настолько, что он смог самостоятельно планировать. Внешность кецалькоатля была не менее выдающаяся, чем его размеры, во многом благодаря очень длинной шее. Представьте себе шейный позвонок 60 сантиметров длиной, а их у ящера было три, плюс еще шесть позвонков чуть меньшего размера. Чему служила такая огромная шея? Одно время думали, по аналогии с современными длинношеими грифами, что кецалькоатли питались падалью, в частности трупами динозавров. Американский палеонтолог Ван Лэнгстон считал, что дело в моллюсках и членистоногих, которых удобно добывать кончиками пинцетообразных челюстей, зондируя грунт на речном или озерном мелководье. Шея этих птерозавров, однако, не была столь подвижной, как у грифов, что делает обе гипотезы сомнительными. Более правдоподобна идея российского палеонтолога Льва Несова - первооткрывателя аждархид, считавшего их рыбоядными. Большая длина шеи позволяла гигантским ящерам долго лететь на небольшой «охотничьей» высоте, касаясь воды концами сомкнутых челюстей и держа туловище довольно далеко от поверхности.

Существует несколько неразрешенных вопросов, относящихся к обоим подотрядам птерозавров. Один из наиболее спорных: могли ли летающие ящеры передвигаться по земле и если могли, то как? Долгое время думали, что, оказавшись на земле, птерозавры становились совершенно беспомощными, они лежали на брюхе и продвигались вперед за счет пропульсивных движений задних конечностей наподобие современных пингвинов и тюленей. Но, скорее всего, это не так, и птерозавры могли передвигаться по земле довольно хорошо, остается, однако, неясным, как именно: используя все четыре конечности, то есть ноги и локти, или только ноги?

Об образе жизни и поведении птерозавров можно только догадываться, опираясь на аналогии с летучими мышами и современными прибрежными птицами вроде олуш и фрегатов. С этой точки зрения летающие ящеры, вероятно, жили большими колониями и обладали сложным половым поведением, о чем свидетельствуют костные гребни на черепах самцов и самок. Гребни самцов были хорошо развиты и разнообразны по форме, в брачный период они служили сигналами для самок совершать выбор, а также сдерживали агрессию других самцов.

Птерозаврам приписывали некоторые ископаемые яйца рептилий начиная с середины XIX века, но только в 2004 году появились первые достоверные находки из Китая и Аргентины . Теперь нет сомнений в том, что эти странные животные откладывали яйца, как другие рептилии и птицы. Яйцо птерозавра покрывала не известковая скорлупа, а кожистая оболочка, как у современных черепах. Это объясняет, почему находок так мало - ведь для их сохранения требуются исключительно благоприятные условия. Скелет эмбриона в яйце из Китая уже практически сформирован, значит, детеныши рождались активными и вскоре после вылупления начинали кормиться самостоятельно. Насколько птерозаврам была характерна родительская забота о детенышах, можно только догадываться. По крайней мере некоторые птеродактилоиды могли вскармливать еще не летающих детенышей полупереваренной пищей, хранившейся у них в горловом мешке, - обнаружено несколько отпечатков этого органа.

Сегодня известно, что птерозавры были высокоорганизованными и очень разнообразными животными, господствовавшими в воздухе большую часть мезозойской эры. Почему же количество их видов сокращалось на протяжении мелового периода? Одна из возможных причин - конкуренция с птицами, которые в то время уже были многочисленны. Из 16 семейств птерозавров осталось только одно, состоящее из настоящих гигантов. Они планировали над прибрежными водами океанов и морей в особо благоприятных погодных условиях. Реальную конкуренцию в воздухе им могли составить только крупные океанические птицы, но время их еще не пришло - эти птицы появились спустя миллионы лет после исчезновения последних птерозавров. Гигантов погубили не птицы, а узкие рамки их образа жизни. Глобальное похолодание климата 65 миллионов лет назад привело к резкому ухудшению погодных условий, возникновению частых штормов, ливней, сокращению теплых восходящих потоков воздуха над океаном. Последние птерозавры оказались слишком уязвимыми для таких изменений и исчезли.

Показать все


Сочленение крыла с телом

Крепление крыльев к телу и их движение

Способность к полетам выработалась у насекомых на протяжении эволюции: как известно, наиболее примитивные отряды могут передвигаться лишь при помощи , так как не имеют . Перемещение по воздуху более выгодно в плане скорости, и на него, к тому же, тратится куда меньше энергии, чем на ходьбу.

Крыло насекомых можно сравнить с двуплечим рычагом. Короткое плечо представлено его внутренней частью (основанием), которая скрыта под мембраной, а длинное располагается снаружи: собственно, эту видимую часть и принято считать крылом. На внутренней поверхности экзоскелета, сразу под местом сочленения крыла с телом, находится плотный выступ, который называют плейральным столбиком; данная структура играет роль точки опоры при взмахе . (фото)

Когда насекомое собирается расправить , оно сокращает специальные мышцы (), прикрепленные к спинке. Спинка перемешается немного вниз, надавливая на внутреннюю часть крыловой пластинки. Она, в свою очередь, упирается в плейральный столбик. При этом основание крыла опускается, а его наружная часть одновременно идет вверх. Если же необходимо опустить крыло, спинка снова поднимается, и все приходит в исходное положение.

Взаимодействие крыльев в полете

Взаимодействие крыльев во время полета

Насекомые перемещаются либо с помощью четырех (жуки, бабочки), либо с помощью двух . Обычно пара крыловых пластинок, расположенная на одной стороне тела, при расправлении образует единую летную поверхность. Исключение составляют лишь некоторые представители класса. Например, среди стрекоз есть как равнокрылые, у которых движутся одинаково, так и разнокрылые - у них каждое крыло перемещается по-своему. (видео)

Типы полета

Разделение полета на разновидности может проводиться с разных точек зрения. Например, в зависимости от его цели специалисты выделяют два основных типа:

  • тривиальный (обыденный) - полет с целью добычи питания, поиска партнера для и др.
  • миграционный - полет, осуществляемый для поиска новых мест обитания.

Эта градация не относится к самым удачным, так как она не отражает особенностей работы крылового аппарата насекомого в том или ином случае. Так, и саранча, и бабочки могут мигрировать на большие расстояния, однако конкретные способы, которыми они это делают, отличаются, и это надо учитывать. По этой причине самой удобной представляется функциональная классификация полета на пассивные и активные способы.

Пассивный полет

- осуществляемый без активной работы мышц, под воздействием силы тяжести, воздушных потоков или накопленной в активном полете кинетической энергии (силы инерции).

Он бывает:

Активный полет

: он возможен благодаря активным движениям . Насекомое осуществляет крыловые удары, которые и обеспечивают его перемещение вперед и вверх. Активное перемещение разделяют на две основных разновидности:
  • машущий полет - осуществляемый при помощи высокоамплитудных взмахов , во время него насекомое движется относительно земли.
  • стоячий (трепещущий) полет - насекомое производит мелкие движения, при этом оно висит в воздухе, но не летит вперед.

Способность к машущему полету имеют все крылатые отряды, а стоячий могут продемонстрировать лишь мухи, бабочки и некоторые другие, довольно немногочисленные насекомые. При этом во время стояния на месте кончик крыла описывает фигуру восьмерки. Если же насекомое смещается вперед, эта фигура «растягивается», и крыло «рисует» синусоиду. (видео)

Скорость и дальность полета

Казалось бы, чем легче насекомое, тем быстрее оно должно летать, но в живой природе все нередко происходит наоборот. Чем меньше размеры у летуна, тем труднее ему противиться току воздуха, и тем больше усилий надо прикладывать для перемещения. Поэтому быстрее всего летают средние и крупные мухи, бабочки и стрекозы. Жуки им в этом уступают: с увеличением размера тела Жесткокрылые становятся более тяжелыми и неповоротливыми. Так, например, бабочка бражника в полном безветрии способна перемещаться на 15 м за одну секунду (54 км/ч) 1046 раз в секунду.

Внешние условия, такие, как ветер и дождь, очень сильно влияют на возможность полета. Обычно насекомые стараются не взлетать при неблагоприятных условиях среды. Однако у некоторых существуют весьма необычные взаимоотношения с природными явлениями. Например, при скорости ветра до 0,7 м/с синие мясные мухи летают очень активно - такая интенсивность течения воздушных потоков действует на них стимулирующее. Однако, как только показатель достигнет больших величин, полет у этих Двукрылых сразу же становится крайне непопулярным занятием.

Во время расселения или миграций насекомые порой могут совершать достаточно длительные перелеты, но на это способны не все. Например, большинство мух в спокойных условиях преодолевают несколько метров, а затем присаживаются отдохнуть. Если лишить их такой возможности, они пролетят чуть больше километра, а затем устанут и упадут. Другие же достаточно сильны для того, чтобы перелетать на куда большие расстояния. Например, стрекоз видели посреди Карибского моря более, чем за 500 км от ближайшего участка суши. Если учесть, что такое насекомое обладает достаточным запасом сил, чтобы вернуться назад, оно показывает фантастические результаты выносливости.

Пассивный полет

Типы полета

Разделение полета на разновидности может проводиться с разных точек зрения. Например, в зависимости от его цели специалисты выделяют два основных типа:

  • тривиальный (обыденный) – полет с целью добычи питания, поиска партнера для размножения и др.
  • миграционный – полет, осуществляемый для поиска новых мест обитания.

– осуществляемый без активной работы мышц, под воздействием силы тяжести, воздушных потоков или накопленной в активном полете кинетической энергии (силы инерции).

Он бывает:

  • парашютирующий : насекомое активно взлетает вверх, набирая определенную высоту, а затем определенным образом расправляет крылья, создавая сопротивление воздуху, и медленно снижается, как на парашюте. При этом движению вниз оно препятствует не только при помощи расправленных крыльев, но и придавая определенное положение конечностям или хвостовым нитям. Такой полет характерен, например, для поденок и мошек, которые «практикуют» его в период роения.
  • планирующий : насекомое разгоняется, а затем останавливает взмахи крыльев, расставляя их в стороны. Благодаря разгону движение еще какое-то время продолжается; оно направлено вперед, с постепенным снижением. Планирующий полет характерен для насекомых с крыльями большой площади, например, бабочек.
  • парящий : он отличается от планирующего тем, что насекомое использует в ходе перемещения токи воздуха, таким образом, во время парения происходит движение вперед и вверх, а не вперед и вниз. Таким образом часто летают стрекозы.
  • дрейфующий : этот полет, как и парящий, невозможен без сил внешней среды. Под действием ветра и вертикальных потоков воздуха мелкие насекомые (мошки, тля) могут преодолевать значительные расстояния, до десятков тысяч километров. Это способствует их расселению, но иногда может быть для них и губительным: они не способны сопротивляться сильному ветру и погибают, если ток воздуха принесет их в воду или по пути они будут уничтожены хищниками. Дрейфующий полет – единственная возможность путешествия по воздуху для бескрылых насекомых, а также личинок.

: он возможен благодаря активным движениям крыльев. Насекомое осуществляет крыловые удары, которые и обеспечивают его перемещение вперед и вверх. Активное перемещение разделяют на две основных разновидности:

  • машущий полет – осуществляемый при помощи высокоамплитудных взмахов крыльями, во время него насекомое движется относительно земли.
  • стоячий (трепещущий) полет – насекомое производит крыльями мелкие движения, при этом оно висит в воздухе, но не летит вперед.

48.Танцы пчел.

Это сообщение о появлении источника нектара и пыльцы; о найденном дереве, с почек которого можно собрать прополис, чтобы заделать в улье щели; об обнаружении водяных источников или о новом месте, пригодном для строительства гнезда. При наличии в природе обильного взятка Т. п. мобилизует пчелиную семью на работу, во время слабого взятка Т. п. не происходит.



Пчела-разведчица, найдя богатый источник нектара или пыльцы, по возвращении в улей танцует на сотах с полным зобиком добычи. Т. п. - своего рода «язык» , сигнал, с помощью которого пчелы узнают о расстоянии от улья до источника взятка, о направлении, в котором он находится, о роде корма.

У пчел существует две разновидности движений - круговые и виляющие. Каждый Т. п. принципиально отличается от другого и несет важную информацию. Следует сказать, что пчелы в полетах всегда ориентируются по солнцу, и даже в облачные дни они чувствуют и знают его положение. Это важно знать, т. к. в танце пчелы-разведчицы обязательно указывается маршрут к взятку относительно солнца.

Во время цветения многих видов растений пчелы-разведчицы разыскивают те из них, которые более наполнены нектаром, и Т. п. более оживленный, а при обнаружении менее богатого источника взятка - менее энергичный. Сила специфического запаха, сладость нектара, приносимые домой пчелой-разведчицей, определяют степень мобилизации сил семьи.

Пчела-разведчица, найдя новый источник корма, оставляет на нем пахучее вещество, выделяемое железами на кончике брюшка, набирает в зобик корм и летит в свой улей. Пахучее вещество помогает отыскивать цель членам ее семьи, поднятым по тревоге.

Прилетев в улей, пчела-разведчица бежит вверх по сотам в гущу пчел. Отрыгивая из зобика собранный мед, она передает его двум-трем пчелам. Освободившись от корма, сборщица начинает свой танец. Если расстояние между источником корма и ульем не превышает 100 метров, она совершает круговой танец.

49.Смена функций рабочей пчелы в течении жизни.

Первоначально при изучении поведения в небольшую пчелиную семью подсаживали группы рабочих пчел известного возраста, помеченных одним цветом. Пчелиную семью содержали в наблюдательном улье с остекленными стенками. Регистрировались формы поведения меченых пчел в разные периоды их жизни. Подобными наблюдениями установлено, что в течение летних месяцев жизнь рабочей пчелы подразделяется на два основных периода. Во время первого периода, продолжающегося около трех педель, молодая рабочая пчела выполняет многие важные функции внутри улья. Во второй период, т.е. в последующие две или три недели, пчела летает в поле. Она приносит воду, нектар, пыльцу, прополис.

Вполне сформировавшаяся рабочая пчела прогрызает крышечку ячейки и выходит на сот. По выходе она часто протягивает по направлению к окружающим ее пчелам расправленный хоботок за пищей. В ответ па это движение другая пчела раздвигает мандибулы и, слегка сместив нерасправленный хоботок из положения покоя (при котором оп сложен под головой), кпереди и книзу, отрыгивает из медового зобика каплю пищи, которая задерживается у основания язычка между раздвинутыми мандибулами. Молодая пчела погружает в каплю свой язычок и высасывает ее. Обе пчелы часто соприкасаются антеннами, контролируя с помощью органов осязания соответствующее положение ротовых частей. Полагают, что в течение первых трех дней своей жизни молодая пчела сама не берет мед из ячеек. В этот период для ее поведения характерны движения чистки и протягивания хоботка к другим пчелам за пищей. Большую часть времени она проводит или в ячейках, которые освободились от только что вышедших пчел и которые она вычищает, или, оставаясь более или менее неподвижной, вместе с другими пчелами обогревает расплод. С четвертого дня жизни молодая пчела уже сама достает мед из ячеек, хотя по-прежнему часто протягивает хоботок к другим пчелам. В это время она потребляет много пыльцы, которую берет из запасов семьи. Белки, содержащиеся в пыльце, абсолютно необходимы для полного развития гипофарингеальных желез, вырабатывающих личиночную пищу. Названные железы начинают функционировать обычно на пятый или шестой день жизни пчелы. До их функционирования молодая рабочая пчела не в состоянии снабжать личинку соответствующей пищей. Роль кормилицы пчела выполняет до тех пор, пока не достигнет возраста 12 дней, когда ее железы становятся сильно редуцированными, а их секреция - весьма недостаточной. Тем временем у пчелы активизируются железы, выделяющие воск, и в возрасте около 12 дней она в состоянии начать отстройку и починку сотов. Если условия погоды благоприятствуют, то примерно в тот же период жизни пчела совершает первый ориентировочный облет.

50.Нектар,мед,прополис.Их происхождение и значение для пчел.

Основным сырьем для получения цветочного пчелиного меда служит нектар, который вырабатывается активными железами растения (цветка) - нектарниками. Нектар представляет собой водный раствор Сахаров. Общее содержание Сахаров в нектаре колеблется от 3 до 80% и зависит от вида растений, климата, времени суток, сезонности, влажности воздуха и почвы. Пчелы предпочитают собирать нектар с большим содержанием сахара.

Падь растительного происхождения или медвяная роса или внецветочный нектар - выделение сахаристого сока на листьях некоторых лиственных деревьев и хвое ели в виде выпота - росы. Образуется она рано утром при резких колебаниях суточной температуры, когда после холодной ночи наступает жаркое утро. Медвяная роса встречается реже и в меньших количествах, чем падь животного происхождения, и по составу ближе к цветочному нектару.

В падиевом мёде содержится больше компонентов, чем в цветочном: аминокислот, декстринов, ферментов, органических кислот и минеральных веществ. В западной Европе падевый мёд ценится выше, чем цветочный.

Сбор и переработка нектара пчёлами

Пчела-сборщица хоботком собирает нектар до полного наполнения медового желудочка и летит в свой улей, где передаёт нектар пчеле-приёмщице. Летящая пчела несёт в среднем 40-45мг нектара. Однако в улей она приносит меньше нектара (20-40мг), так как часть его расходуется на восстановление сил во время полёта. Чтобы создать 100г мёда пчела должна посетить около миллиона медоносных цветков. Чтобы собрать килограмм мёда пчеле нужно принести примерно 150 тыс. нош нектара.

Нектар поступивший в улей содержит большое количество воды 40-80%. В созревшем мёде 18-20% воды. Пчелы-приемщицы после принесения нектара начинают обрабатывать нектар своими челюстями в продолжение 20 минут. Эта обработка заключается в последовательном и многократном выпускании капельки нектара через раздвинутые верхние челюсти на хоботок, а затем проглатывании ее в медовый желудочек. Так повторяется 120-240 раз. За это время нектар подвергается воздействию теплого воздуха циркулирующего в улье, при этом нектар теряет значительную часть воды и насыщается ферментами, выделяемыми слюнными железами пчелы. С увеличением концентрации сухого вещества проветривание содержимого медового зобика становится все трудней и оно полностью прекращается при его влажности около 30-40% вследствие большой вязкости.

Если пчёлы-приёмщицы загружены работой, то пчёлы-сборщицы подвешивают каплю нектара к верхней стенки восковой ячейки. Висячие капли имеют большую поверхность испарения и влага из нектара испаряется интенсивнее.

Закончив обработку, пчёламы-приёмщицы откладывают нектар в пустые сотовые ячейки вблизи расплода. Здесь поддерживается наиболее высокая температура, облегчающая удаление воды из нектара. При наличии достаточного количества пустых ячеек сначала они заполняются на одну четверть или на одну треть. При недостатке места этого не бывает. В таком случае ячейки заполняются сразу наполовину или даже больше. Капельки нектара подвешиваются пчелами в разных местах ячейки с тем, чтобы испарение воды из него протекало более интенсивно.

Дальнейшая обработка нектара заключается в вентилировании с целью удаления влаги и многократном перенесении его из одной ячейки в другую, пока незревший мёд не станет густым. Множество пчел, которые находятся на дне и по стенам улья, расположившись в один или несколько рядов создают циркуляцию воздуха в улье, ускоряющую испарение влаги. Кроме того, сгущение нектара происходит в медовом желудочке пчелы-работницы. Капелька нектара уменьшается в объёме за счёт всасывания воды клетками медового желудочка. В организме пчелы нектар также обогащается ферментами, органическими кислотами, антибактериальными веществами и т.д.

Ячейки наполненные доверху созревшим мёдом пчёлы запечатывают восковыми крышечками, и в таком виде мёд может хранится в течение многих лет.

Совокупность процессов, которые происходят в улье при переработке нектара (пади) в мед называется созреванием меда. Среди этих процессов в первую очередь следует выделить удаление воды, обогащение незрелого мёда ферментами и расщепление (инвертирование) и синтез (образование) сахаров.

В нектаре может содержаться до 80% и более воды. В процессе переработки нектара пчёлами содержание воды уменьшается до 20% и менее. Мёд с большим содержанием воды начинает бродить и непригоден к длительному хранению.

При созревании мед обогащается многими полезными продуктами деятельности слюнных желёз пчёл, в том числе ферментами (современное название энзимы), ускоряющими обмен веществ в организме человека. Под действием ферментов и происходит разложение и синтез сахаров. Например расщепление сахарозы идёт под действием фермента инвертазы.

В процессе созревания меда происходят и другие сложные биохимические реакции, в результате которых создается его хороший вкус, аромат, приобретается стойкость при хранении и образуются декстрины (продукты неполного расщепления крахмала), бактерицидные и другие вещества, обуславливающие ценность этого продукта

Продолжительность созревания (т.е. до запечатывания ячеек) по разным источникам составляет от 1-3 дней до 1-20 дней и зависит от следующих параметров: сила пчелиной семьи; интенсивность взятка; исходное содержание воды в сырье; степень заполнения ячеек; методы работы пчеловода; климатические факторы, такие как влажность воздуха и температура. Некоторые авторы отмечают, что полное созревание мёда наступает через 3-4 недели после запечатывания ячеек.

Согласно теории внутреннего происхождения - прополис является смолистым остатком от первой фазы переваривания пыльцы. Рабочие пчелы глотают пыльцу, в кишечнике пыльцевые зерна набухают и лопаются. Из них вытекает плазма, которую пчелы используют для кормления молодых пчел - кормилиц расплода. Из неперевариваемых оболочек пыльцевых зерен образуется бальзам, который пчелы выделяют в виде капель. Этот бальзам и является основной составной частью прополиса.

Мед жизненно необходим пчелам для питания, особенно зимой. Кроме нектара, пчелы собирают с растений цветочную пыльцу, являющуюся их белковым кормом. Комочки пыльцы пчелы тоже складывают в ячейки сот, утрамбовывают их, а сверху заливают медом. Такой продукт называется пергой. Перга - источник белкового питания пчелиной семьи. Зимой запечатанные соты освобождаются от тонкой оболочки, и тогда мед поедается пчелами. Эта еда, богатая калориями, имеет особое значение для пчел. Она позволяет сохранить постоянной температуру улья. Для этого пчелы быстро вращают крыльями и гонят воздух по всему улью. Таким образом яйца и личинки защищаются от переохлаждения или перегрева.

51.Общественные насекомые.Касты у пчел и муравьев.

Общественные насекомые (социальные насекомые) - группа насекомых, отличающаяся общественным образом жизни.
К ним относят муравьёв, пчёл, ос, термитов, шмелй.
Для общественных насекомых характерно обитание в совместно построенном гнезде, уход за потомством, перекрывание нескольких поколений и разделение обязанностей среди членов их семей. Семьи состоят из нескольких каст: половых (репродуктивных самок и самцов) и бесплодных рабочих особей (рабочие, солдаты и другие) . Последние выполняют все функции в семье, кроме размножения.
Большинство общественных насекомых относится к отряду Перепончатокрылые насекомые.
Причем, только семейство Муравьи является полностью социальным, тогда как в других семействах перепончатокрылых (пчелы и осы) наблюдаются все стадии перехода от одиночного образа жизни к общественному. Также к этой группе относится подотряд Термиты. Отдельные признаки социальности наблюдаются и в других группах насекомых, например, у клопов, тлей, уховерток.

К общественным насекомым относится медоносная пчела. Крупная семья пчел насчитывает до 100 тыс. особей, которые живут в улье (рис. 105, А). В улье большинство насекомых - рабочие пчелы. Это бесплодные самки, у которых видоизмененный яйцеклад служит жалом. Они чистят улей, собирают нектар, ухаживают за маткой и личинками, охраняют улей от врагов. Живут они только один сезон (около года). В пчелиной семье главная пчела - матка, которая откладывает яйца - до 2000 в сутки. Живет она около пяти лет. Весной, в мае - июне, в пчелиной семье из куколок появляются новая матка и несколько десятков самцов, которых называют трутнями: никакого участия в работе они не принимают, а основная их задача - оплодотворение матки. Старая самка с частью рабочих пчел покидает улей - происходит роение. Пчеловоды собирают рой и поселяют его в новом улье. Осенью рабочие пчелы изгоняют оставшихся трутней из улья, и они погибают.

Касты пчел.Семьи пчел содержат до 80 тыс. особей,среди них только одна матка(царица),несколько десятков трутней(цари) и все остальные рабочие пчелы

Матка всегда одна и занимается откладыванием яиц.Живет до 5 лет,выходит наружу только после рождения только для брачного полета. В каждом улье только одна плодовитая матка. Она спаривается с трутнями, развивающимися из неоплодотворенных яиц, а затем только откладывает яйца.

Из большинства яиц выходят рабочие пчелы. Они развиваются из оплодотворенных яиц и появляются на свет, проведя в ячейке 21 день. Через несколько дней молодые рабочие начинают чистить пустые ячейки, готовя их к приему новых яиц. Спустя 5-6 дней у них во рту созревают железы, позволяющие им кормить матку и личинок богатым белками пчелиным молочком. Личинки трутней и рабочих пчел с пятого дня жизни получают цветочную пыльцу, а будущих маток кормят только пчелиным молочком.

В возрасте 18-20 дней рабочие пчелы выполняют обязанности сторожей внутри улья, а после 21 дня начинают вылетать из улья в поисках нектара. Возвратившись с добычей, они сообщают другим пчелам, в какой стороне находится новый источник пищи. Большинство рабочих пчел погибают спустя примерно 6 недель после рождения, а матка живет до 4-5 лет.

у муравьев имеется три основные касты: самцы, самки и рабочие (бесплодные модифицированные самки).

Рассмотрим горизонтальный поток воздуха относительно наклонной поверхности крыла в том случае, когда его передняя кромка приподнята над задней. В этом смысле крыло действует как несущая плоскость. Поток воздуха над крылом встречает меньшее сопротивление и развивает большую скорость, чем под крылом (рис. 17.52). В результате давление воздуха над крылом уменьшается, а под крылом - увеличивается. Так возникает подъемная сила . Ее величина зависит от размеров и формы крыла, угла его наклона по отношению к длинной оси тела (угол атаки) и скорости полета. В воздухе на тело птицы действует еще одна сила, которая стремится отвести крыло назад в направлении воздушного потока; она называется лобовым , или аэродинамическим, сопротивлением . Механическая эффективность крыла зависит от его способности развивать большую подъемную силу при небольшом относительном росте лобового сопротивления.

Различают три основных типа полета: машущий, парящий (планирующий) и зависание.

Машущий полет

У таких птиц, как голубь, у которых крылья делают около двух взмахов в секунду, основная мощность развивается при опускании крыльев. Это происходит благодаря сокращению сильно развитых больших грудных мышц , которые одним концом прикреплены к плечевой кости, а другим - к килю грудины. При отрыве от земли крыло в начале маха опускается почти вертикально и его передняя кромка располагается ниже задней. Маховые перья 1-го порядка отклоняются вверх под давлением воздуха. Они плотно сомкнуты, чтобы обеспечить максимальное сопротивление воздуху, а значит, и максимальную подъемную силу. Затем по мере опускания крыло движется вперед и поворачивается таким образом, что его передняя кромка отклоняется вверх. В этом положении крыло создает силу, поднимающую корпус. Воздух, проходящий между маховыми перьями, стремится разделить их и отогнуть кверху (рис. 17.53).

Подъем крыла начинается тогда, когда крыло еще полностью не опущено. Внутренняя часть предплечья резко поднимается вверх и назад, и при этом передняя кромка крыла находится в наклонном положении над задней. Это делают малые грудные мышцы, прикрепленные к дорсальной поверхности плечевой кости и к грудине. При движении крыла вверх оно сгибается в запястье и кисть поворачивается таким образом, что маховые 1-го порядка резко отводятся назад и вверх до того момента, пока все крыло в какой-то мере не выпрямится над телом птицы. Во время этого движения маховые 1-го порядка разъединяются, так что воздух проходит между ними и его сопротивление уменьшается. Движением этих перьев назад в основном и создается мощный толчок, который птица использует для поступательного движения вперед. Еще до того момента, как маховые 1-го порядка поднимутся до высшей точки, снова начинают сокращаться большие грудные мышцы, опускающие крылья, и весь процесс повторяется.

При длительном машущем полете работа крыльев заметно видоизменяется и требует гораздо меньше энергии, чем при отрыве от земли. Взмахи при этом не такие сильные, крылья не соприкасаются за спиной, и нет движения вперед на заключительном этапе опускания крыльев. Крылья обычно выпрямлены, и махи вверх и вниз происходят в запястье (в сочленении костей предплечья и запястья). Активного отведения кисти вверх и назад не происходит - крыло поднимается пассивно в результате давления воздуха на его нижнюю поверхность.

По окончании полета птица приземляется, опуская и распластывая хвост, который одновременно служит тормозом и источником подъемной силы. После создания этой силы ноги опускаются, и птица прекращает движение. Хвост в полете служит также рулем, и устойчивость птицы обеспечивается нервным контролем при участии полукружных каналов. В них возникают импульсы, которые стимулируют вспомогательные мышцы, изменяющие форму и положение крыльев и соотношение между их взмахами.

Разные птицы летают с разными скоростями. Эти различия обусловлены формой крыльев и ее изменениями в полете, а также частотой взмахов. Рис. 17.54 позволяет сравнить крылья быстрых летунов (таких, как стрижи) и медленных (как воробьи).

17.9. Перечислите характерные особенности стрижа, позволяющие ему быстро летать.

Планирующий и парящий полет

При планировании крылья неподвижно распластаны под углом 90° относительно тела, и птица постепенно теряет высоту. Когда птица, планируя, опускается, на нее действует сила тяжести, которую можно разложить на две составляющие, одна из которых (тяга) направлена вперед по линии полета, а другая - вниз под прямым углом к первой (рис. 17.55). С увеличением скорости планирования эту вторую силу уравновешивает возрастающая подъемная сила, а тягу уравновешивает лобовое сопротивление, и с этого момента птица планирует с постоянной скоростью. Скорость и угол скольжения зависят от размеров, формы и угла атаки крыльев и от веса птицы.

Птицы, обитающие на суше, используют при планировании восходящие термальные потоки воздуха, которые возникают, когда горизонтальный поток, встретив преграду (например, гору), отклоняется вверх или когда теплый воздух вытесняется холодным и поднимается вверх; так происходит, например, над городами. Птицы, имеющие легкое тело и широкие крылья, такие как канюки и орлы, искусно используют термальные потоки и могут постепенно набирать высоту, делая небольшие круги. Планирование без потери высоты и даже с подъемом называется парением.

У морских птиц, например альбатросов, форма тела и крыльев иная, и они парят по-другому (рис. 17.56). У альбатроса большое тело и очень длинные узкие крылья, и он использует порывы ветра над волнами. За время скольжения против ветра вверх он поднимается на высоту около 7-10 метров. Затем он разворачивается по ветру и с большой скоростью на отогнутых назад крыльях спускается вниз. В конце скольжения вниз альбатрос описывает дугу, возвращаясь во встречный поток воздуха с крыльями, вынесенными несколько вперед. Такое положение крыльев и быстрое движение вперед относительно воздуха обеспечивают подъемную силу, необходимую для набора высоты перед очередным спуском. Альбатрос способен также парить, покрывая большие расстояния параллельно гребням волн; при этом он использует небольшие восходящие потоки воздуха от волн, подобно тому как сухопутные птицы используют потоки над горными склонами.

Зависающий полет

При зависании птица машет крыльями, но при этом остается на одном месте. Крылья совершают около 50 взмахов в секунду, и развиваемая ими тяга, направленная вверх, уравновешивает вес тела. Птицы, способные зависать, имеют очень сильно развитые летательные мышцы (1/3 от веса тела). Их крылья могут наклоняться почти под любым углом. Большая часть маховых перьев-1-го порядка (маховых 2-го порядка только шесть), и они используются для создания тяги.

Окончание в рот - это одна из безумно популярных предложений интимного характера, которая намеревает выдерживание обычных поз, её способны совершить индивидуалки с сайта

Забудем на некоторое время все воздушныe маневры типа поворотов, взлетов и приземлений. Активный полет, при котором ловчая птица продвигается вперед с помощью взмахов крыльев, имеет несколько узнаваемых типов. Первый - это размеренный полет, более или менее сравнимый с нашей ходьбой. Исследования Spedding, Pennycuick и Rayner показали, что когда сокол, например, пустельга или сапсан, летит очень медленно, со скоростью менее трех метров в секунду, движения крыльев вверх являются пассивными, не обеспечивающими подъема и не создающими вихрей. Результатом являются тороидообразные вихревые кольца, создаваемые толчками от движений крыльев вниз (рисунок 1.16. 1). При взмахе крыло сгибается очень близко к телу и поджимается, не создавая при этом следовых вихрей воздуха.

Сходным образом летают сарычи и орлы, но взмахи крыльев у них глубже и медленнее, а крылья складываются сильнее. Их крылья движутся вверх быстрее, чем вниз. При напряженном полете весьма вероятно, что взмах становится активен, обеспечивая некоторую подъемную силу, в то время как при более медленном полете, он, вероятно, пассивен. Когда сокол набирает скорость выше 7 метров в секунду, воздушной скорости достаточно, чтобы поднять крылья, что уменьшает нагрузку на надлопаточные мыщцы. Когда взмах активен, он создает следовые завихрения (рисунок 1.16.2). Вместо того чтобы складываться близко к телу, крыло при взмахе удерживается жестче и прямее, что ведет к типичному мерцающему полету крейсирующего сапсана (рисунок 1.16.3).

Сокол, который летит на такой большой скоpости, что обычные крейсирующие взмахи крыльев будут только затормаживать полет, похож на велосипедиста, который не может крутить педали достаточно быстро, чтобы ускорить движение. Поэтому сокол скользит в воздухе с полузакрытыми крыльями, при этом второстепенные обеспечивают подъемную силу, в остальном минимизируя рычажную нагрузку на грудные мыщцы. Сзади мягко слетают следовые вихри (в центре, рисунок 1.16.4) как при крутом плaнировании (сравните рисунки 1.15.2 и 3). Затем сокол выполняет серию глубоких пульсирующих взмахов, при которых он вкладывает как можно больше силы в несколько быстрых опусканий крыла, более быстрых, чем скорость полета, и которые направлены таким образом, чтобы обеспечить толчок, а не подъем. Результатом, который очень хорошо заметен у кречета на спринтерском полете, является то, что каждый взмах крыльев явно рывками толкает птицу вперед. Выглядит это так, словно кто-то невидимый пинает птицу сзади. Даже небольшой серии таких пульсирующих взмахов достаточно, чтобы сокол набрал такую скорость, при которой дальнейшие взмахи крыльев бесполезны. К тому времени что-нибудь произойдет.

Ястребы тоже способны к спринтерскому полету, но у них немного другая проблема. В то время как крупным соколам необходимо очень быстро преодолевать большие дистанции, ястребам нужно очень быстро летать на короткие дистанции. Они могут выиграть или проиграть схватку в считaнные секунды. Следовательно, у них проблемы не с наибольшей скоростью, а с ускорением. Ястребы начинают спринт со статического положения или во время медленного полета. Поэтому их спринт должен начинаться почти с нуля. В то время как кречет похож на велосипедиста, который выигрывает гонку на длинную дистанцию за счет максимальнай скорости, ястреб напоминает велосипедиста, который ожидает старта для гонки на 50 метров. Возможно, к финишу он даже не успеет набрать свою максимальную скорость. Следовательно, ему нужно полностью выложиться за короткий промежуток времени, поэтому он не может тратить половину этого времени на бесполезные поднятия крыла, которые не содействуют толчкам. Он решает эту проблему используя эластичные крылья с вырезками на первостепенных, которые не только аккумулируют энергию, но и уменьшают тормозной эффект при взмахе.

При опускании крыла (рис. 1.16.5 а-е), создается толчок и подъем, но крыло очень короткое, что дает грудным мышцам техническое преимущество, кончики первостепенных сгибаются назад к тому месту, где угол их наклона достигает 90 градусов к поверхности крыла по вертикали и по горизонтали (рис. 1.16.5 е). Затем птица начинает создавать тягу своими крыльями, активно используя надлопаточныe мышцы (1.16.5 f). Эластичные первостепенные начинают восстанавливать свою нормальную форму, толкая воздух вниз и назад, что обеспечивает подъем и толчки, а также оказывает помощь надлопаточным мышцам. Теперь крыло на полпути назад и наполовину сложено.Края первостепенных направлены вперед и выровнены с углом падения. В верхней точке взмаха они сходятся вместе и снова обеспечивают толчок при опускании крыла.

При условии активного полета в неподвижном воздухе и на одном уровне мы можем построить приближенныe кривые ускорения для различных хищников. Не имея возможности сравнить данныепо ловчим птицам, я скомпилировал эти кривые из нескольких источников, главным образом из работ Н. J. Slijper и Т. А. М. Jack , а также из собственных наблюдений. Хотя они, возможно, не очень точны для абсолютной скорости, они позволяют получить представление о различии между видами, хотя, конечно индивидуальные различия между птицами весьма значительны.

Обыкновенный сарыч (рисунок 1.16.6) относительно плохо летает активным полeтом. Он медленно разгоняется, имеет небольшую максимальную скорость и вскоре выдыхается. Редко можно увидеть, чтобы сарыч пролетел спритерским полетом более 100 м, очень редко 200 метров. Он скоро начинает отдыхать, планируя между взмахами, на графике это начинается на 40 метрах. При горизонтальном полете он может набрать скорость до 10 мeтpов в секунду, делая около 5-6.5 взмахов в секунду. Немного найдется добычи, которая передвигается достаточно медленно, чтобы сподвигнуть сарыча приложить усилия дольше, чем на 80 метров. Большая часть добычи или будет быстро поймана (например, полевки) или при погоне оставит сарыча
далеко позади (например, куропатка). В таких случаях сарыч отстает и куда-нибудь садится, в данном случае на 45 метрах.

Мелкие ястребы, такие как перепелятник, напротив, развивают максимальную скорость менее чем за секунду, на первых же метрах. Их взрывной спринт дает им преимущество над всеми другими перечисленными хищниками. Однако немногие сохраняют спринт на предельной скорости больше чем на 100 м. К этому времени полет обычно так или иначе заканчивается, и если он был успешным, то перепелятник примерно через 150 метров садится.

Изучая тетеревятника Slijper обнаружил, что самцы стартуют быстрее, но примерно через 70 метров самки их обгоняют. Встав на крыло, самки летят немного быстрее. Примерно через 130 метров тетеревятники обычно сбрасывают скорость. Если им не удалось поймать жертву в начале спринта, они бросают преследование или летят по инерции, набирая высоту и следя за жертвой.

На первых 20 метрах сапсан летит не намного быстрее сарыча, но на 50 метрах он начинает набирать скорость, примерно на 130 метрах он обгоняет тетеревятника и поддерживает хорошую скорость в течение нескольких сотен метров. При горизонтальном машущем полете на длинной дистанции его, вероятно, обгонит только кречет.

Новозеландский сокол со своим ястребиным профилем и соколиной физиологией, стартует скорее как небольшой самец тетеревятника. К тому времени, когда самка перепелятника пролетит 80 метров, сокол пролетит 100 метров. Примерно к 130 метрам, когда тетеревятник начинает сбавлять скорость, скорость новозеландского сокола остается прежней, но его обгоняет набравший скорость сапсан. К тому времени, когда сапсан достигнет 280 метров, новозеландский сокол будет отставать примерно на 40 метров, и оба исчезнут за горизонтом без признаков усталости.

Ускорение и максимальная скорость у хищников при преследовании должны быть сопоставимы с этими параметрами их жертв. Перепел имеет сходный рисунок полета с перепелятником, фазан с тетеревятником, а голуби (хотя немного быстрее при взлете) как у сапсана. Ястребы быстро бросают сильную, способную к длительному полету добычу, если только не ловят ее на спринте или напав из засады.

Эффект взрывного старта ястребов проявляется в наборе скорости в первые 40 метров. Ястреб Купера, например, обычно делает 4-5.5 взмахов в секунду, а при взлете 7-8 взмахов в секунду, используя грудные мышцы, составляющие около 17% от общего веса тела. Он преодолеет эту дистанцию, когда сарыч и большинство соколов пролетят всего 20 метров. Их мастерство в преодолении дистанции состоит в способности выполнить прямую атаку с лета (см. 6.10) и умении оценить максимальную дистанцию, на которой целесообразно атаковать намеченную добычу. Крупные соколы обычно не предпринимают короткие прямые атаки, а предпочитают более предсказуемые длинные. Сарычи по возможности вообще не используют спринтерский полет, вместо этого они используют высоту, позволяющую атаковать с планирующего полета или спикировать.

Кроме бесконечных преобразований кривых разгона и дистанций атаки, существует проблема маневрености. Здесь наивысшие показатели у ястребов, дербника и новозеландскаго сокола; крупные соколы и ястребы Харриса менее проворны и более громоздки в хвостовой части, чем сарычи. Добыча тоже очень различается по маневрености (см. раздел 7.4). Обычно ценой большей маневрености является меньшая максимальная скорость, длинный хвост способствует верткости, но создает тормозной эффект.

Понравилась статья? Поделиться с друзьями: