В чем измеряется разрывная нагрузка. Механические свойства

1.5 Дефекты трубопроводных конструкций и причины их возникновения

Дефект – это любое несоответствие регламентированным нормам. Главной причиной появления дефектов является отклонение рабочего параметра от нормативного значения, обоснованного допуском.

Дефекты трубопроводных конструкций подразделяются на:

Дефекты труб;

Дефекты сварных соединений;

Дефекты изоляции.

Различают следующие дефекты труб:

Металлургические – дефекты листов и лент, из которых изготавливаются трубы, т.е. различного рода расслоения, прокатная плена, вкатанная окалина, поперечная разнотолщинность, неметаллические включения и др.

Технологические – связаны с несовершенством технологии изготовления труб, которые условно можно разделить на дефекты сварки и поверхностные дефекты (наклеп при экспандировании, смещение или угловатость кромок, овальность труб)

Строительные – обусловлены несовершенством технологии строительно-монтажных работ, нарушениями технологических и проектных решений по транспортировке, монтажу, сварке, изоляционно-укладочным работам (царапины, задиры, вмятины на поверхности труб).

Причины возникновения дефектов труб

Существующая технология прокатки металла, технология непрерывной разливки стали на отдельных металлургических заводах является одной из причин изготовления некачественных труб. Нередки случаи разрушения по причине расслоения металла.

На трубных заводах входной контроль сырья несовершенен или полностью отсутствует. Это приводит к тому, что дефекты сырья становятся дефектами труб.

При изготовлении труб приходится подвергать металл нагрузкам, при которых он работает за пределом текучести. Это приводит к появлению наклепа, микрорасслоений, надрывов и других скрытых дефектов. Из-за кратковременности последующих заводских испытаний труб (20…30 с) многие скрытые дефекты не выявляются и «срабатывают» уже в процессе эксплуатации МТ.

В недостаточной степени контролируется заводами и геометрическая форма труб. Так, на трубах диаметром 500…800мм смещение кромок достигает 3мм (при норме для спирально-шовных труб 0,75…1,2мм), овальность – 2%

Механические воздействия при погрузочно-разгрузочных, транспортных и монтажных операциях приводят к появлению на трубах вмятин, рисок, царапин, задиров

При очистке трубопроводов скребками-резцами возникают дефекты пластической деформации локальных участков поверхности трубы – риски, подрезы и т.д. Эти концентраторы напряжений являются потенциальными очагами развития коррозионно-усталостных трещин. Очистка трубопроводов с помощью проволочных щеток исключает повреждения труб в виде подрезов, но при определенных режимах обработки приводит к деформациям поверхности металла, снижающим его коррозионную стойкость.

Коррозионные повреждения труб (внешние - в местах нарушения сплошности изоляции, а внутренние - в местах скоплений воды)

Дефект сварного соединения – это отклонения разного рода от установленных норм и технических требований, которые уменьшают прочность и эксплуатационную надежность сварных соединений и могут привести к разрушению всей конструкции. Наиболее часто встречаются дефекты формы и размеров сварных швов, дефекты макро- и микроструктуры, деформация и коробление сварных конструкций.

Нарушение формы и размеров шва свидетельствуют о наличии таких дефектов, как наплывы (натеки), подрезы, прожоги, незаваренные кратеры.

Наплывы – чаще всего образуются при сварке горизонтальными швами вертикальных поверхностей, в результате натекания жидкого металла на кромки холодного основного металла. Они могут быть местными (в виде отдельных застывших капель) или протяженными вдоль шва. Причинами возникновения наплывов являются большая сила сварочного тока, длинная дуга, неправильное положение электрода, большой угол наклона изделия при сварке на подъем и спуск.

Подрезы – представляют собой углубления, образующиеся в основном металле вдоль края шва. Подрезы образуются из-за повышенной мощности сварочной горелки и приводят к ослаблению сечения основного металла и разрушению сварного соединения.

Прожоги – это проплавление основного или наплавленного металла с возможным образованием сквозных отверстий. Они возникают вследствие недостаточного притупления кромок, большого зазора между ними, большой силы сварочного тока или мощности горелки при невысоких скоростях сварки. Особенно часто прожоги наблюдаются в процессе сварки тонкого металла и при выполнении первого прохода многослойного шва, а также при увеличении продолжительности сварки, малом усилии сжатия и наличии загрязнений на поверхностях свариваемых деталей или электродах (точечная и шовная контактная сварка).

Незаваренные кратеры – образуются при резком обрыве дуги в конце сварки. Они уменьшают сечение шва и могут явиться очагами образования трещин.

К дефектам макроструктуры относят дефекты: газовые поры, шлаковые включения, непровары, трещины, выявляемые с помощью средств оптики (увеличение не более чем в 10 раз).

Газовые поры – образуются в сварных швах вследствие быстрого затвердевания газонасыщенного расплавленного металла, при котором выделяющиеся газы не успевают выйти в атмосферу.

Рисунок 2 – Газовые поры

Такой дефект наблюдается при повышенном содержании углерода в основном металле, наличии ржавчины, масла и краски на кромках основного металла и поверхности сварочной проволоки, использовании влажного или отсыревшего флюса.

Шлаковые включения – результат небрежной очистки кромок свариваемых деталей и сварочной проволоки от окалины, ржавчины и грязи, а также (при многослойной сварке) неполного удаления шлака с предыдущих слоев.

Они могут возникать при сварке длинной дугой, неправильном наклоне электрода, недостаточной силе сварочного тока, завышенной скорости сварки. Шлаковые включения различны по форме (от сферической до игольчатой) и размером (от микроскопической до нескольких миллиметров). Они могут быть расположены в корне шва, между отдельными слоями, а также внутри наплавленного металла. Шлаковые включения ослабляют сечение шва, уменьшают его прочность и являются зонами концентрации напряжений.

Рисунок 3 – Шлаковые включения

Непровары – местное несплавление основного металла с наплавлением, а также несплавление между собой отдельных слоев шва при многослойной сварке из-за наличия тонкой прослойки окислов, а иногда и грубой шлаковой прослойки внутри швов.

Рисунок 4 – Непровары

Причинами непроваров являются: плохая очистка металла от окалины, ржавчины и грязи, малый зазор в стыке, излишнее притупление и малый угол скоса кромок, недостаточная сила тока или мощности горелки, большая скорость сварки, смещение электрода в сторону от оси шва. Непровары по сечению шва могут возникнуть из-за вынужденных перерывов в процессе сварки.

Трещины – в зависимости от температуры образования подразделяют на горячие и холодные.

Рисунок 5 – Трещины

Горячие трещины появляются в процессе кристаллизации металла шва при температуре 1100 – 1300 С. Их образование связано с наличием полужидких прослоек между кристаллами наплавленного металла шва в конце его затвердевания и действием в нем растягивающих усадочных напряжений. Повышенное содержание в металле шва углерода, кремния, водорода и никеля также способствует образованию горячих трещин, которые обычно располагаются внутри шва. Такие трещины выявить трудно.

Холодные трещины возникают при температурах 100 – 300 С в легированных сталях и при нормальных (менее 100 С) температурах в углеродистых сталях сразу после остывания шва или через длительный промежуток времени. Основная причина их образования – значительное напряжение, возникающее в зоне сварки при распаде твердого раствора и скопление под большим давлением молекулярного водорода в пустотах, имеющихся в металле шва. Холодные трещины выходят на поверхность шва и хорошо заметны.

К дефектам микроструктуры сварного соединения относят

Микропоры,

Микротрещины,

Нитридные, кислородные и другие неметаллические включения,

Крупнозернистость,

Участки перегрева и пережога.

Дефекты изоляции - нарушение сплошности; адгезия; заниженная толщина; гофры; морщины; задиры; царапины; проколы.

Основные причины образования дефектов изоляционного покрытия на трубопроводах:

при хранении и подготовке материалов – засорение битума и обводнение готовой мастики и ее составляющих;

при приготовлении грунтовки и мастики – небрежная дозировка составляющих; несоблюдение режима разогревания котла; недостаточное размешивание битума при приготовлении грунтовки;

при нанесении грунтовки и битумной мастики – загустение грунтовки; образование пузырьков на поверхности трубопровода; оседание пыли на поверхность труб; пропуски грунтовки и мастики на поверхности трубопровода и особенно около сварных швов; неровное нанесение мастики; охлаждение мастики; конструктивные недостатки изоляционной машины;

при нанесении армирующих и оберточных рулонных материалов – нарушение однородности покрытия; выдавливание слоя мастики; недостаточное погружение стеклохолста в мастику;

при нанесении полимерных лент – сквозные отверстия в ленте; несплошной клеевой слой; неравномерность толщины ленты в рулоне; неправильная регулировка намоточной машины; нарушение температурного режима нанесения ленты; плохая очистка поверхности труб;

при укладке трубопровода – нарушение технологии укладки, особенно при раздельном способе укладки; захват изолированных труб тросом; трение трубопровода о стенки траншеи при укладке; отсутствие подготовки дна траншеи; отсутствие подсыпки не менее 10см дна траншеи на участках с каменистыми и щебенистыми грунтами; плохое рыхление мерзлых грунтов и особенно отсутствие регулировки изоляционных машин;

при эксплуатации трубопровода – действие грунта; вес трубопровода; почвенные воды; микроорганизмы; корни растений; температурные воздействия; агрессивность грунта.






Ущерба. Рисунок 3.6 - Схема процесса формирования дерева событий и поиска пути движения по нему. 4. Программное обеспечение ситуационного управления безопасностью магистральных газопроводов 4.1 Описание программы управления безопасностью магистральных газопроводов Программа предназначена для работы в операционных средах MicroSoft Windows 98/NT/XP. Windows обеспечивает удобный и...




КВт (2200 л.с.) разработки этой же фирмы. С конца 1940-х гг. ГТД начинают применяться для привода морских судовых движителей, а с конца 1950-х гг. - в составе газоперекачивающих агрегатов (ГПА) на магистральных газопроводах для привода нагнетателей природного газа. Таким образом, постоянно расширяя область и масштабы своего применения, ГТД развиваются в направлении повышения единичной мощности, ...

Классификация дефектов труб. Все дефекты труб МГ можно разделить на следующие классы:


1. Отклонение оси трубы от проектного положения. 2. Нарушение формы поперечных сечений труб. 3. Дефекты стенки трубы и сварных соединений. К первому классу относятся: - всплывшие участки трубопровода; - арочные выбросы и выпучины; - провисы, просадки.
К всплывшим участкам относятся участки магистрального газопровода, потерявшие проектное положение оси в обводненном грунте с выходом на поверхность воды. Анализ и оценку несущей способности таких участков можно оценивать, используя рекомендации.
К арочным выбросам относятся участки магистрального газопровода, потерявшие в процессе эксплуатации проектное положение оси с выходом на дневную поверхность. По форме арочные выбросы подразделяются на симметричные и несимметричные (в виде одной полуволны синусоиды), на косогоре (со смещением оси в вертикальной плоскости) и типа «змейки» в горизонтальной плоскости (с двумя и более полуволнами). К выпучинам относятся участки трубы, выпучившиеся в результате морозного пучения грунтов, обычно при промерзании талых грунтов, вмещающих трубопровод.
Для анализа и оценки работоспособности таких участков необходимо использовать инструкции.
К провисам относятся оголенные участки трубы без опирания на грунт, возникающие, к примеру, в результате карстовых явлений или оттаивания вечномерзлых грунтов.
К просадкам относятся участки трубы на глинистых и лесовых грунтах, ось которых при повышении влажности выше определенного значения опускается ниже проектного уровня, или участки труб, проседающие при оттаивании вечномерзлых грунтов. Ко второму классу относятся: - овальность трубы; - вмятины; - гофры.
Овальность сечения - дефект геометрической формы сечения трубы (трубопровода), возникающий в результате превращения начального кольцевого сечения трубы в эллиптическое. Овальность сечений образуется при действии значительных внешних поперечных (радиальных) нагрузок на трубу (трубопровод). Овальность сечения определяется как отношение разности между максимальным Д и минимальным Д диаметрами в одном и том же сечении к номинальному диаметру. Оценка работоспособности такого участка определяется согласно Рекомендациям. Вмятина - местное изменение формы поверхности трубы, не сопровождающееся утонением стенки. Вмятина образуется в результате взаимодействия трубы с твердым телом, не имеющим острых кромок. Это взаимодействие может быть как статическим, так и динамическим.


Вмятина имеет, как правило, плавное сопряжение с остальной поверхностью трубы и поэтому не вызывает пиковой концентрации напряжений. В области вмятины имеются значительные остаточные изгибные (по толщине стенки трубы) пластические деформации. Эти деформации возникают как в поперечных, так и в продольных сечениях вмятины, но обычно максимальные их значения имеют место в поперечном (кольцевом) направлении.
Вмятина характеризуется поверхностными величиными (вдоль трубы и в кольцевом направлении) и глубиной.
При обследовании МГ рекомендуется обращать внимание на возможность наличия вмятины в зоне нижней образующей газопровода. Зона нижней образующей (5–6–7 часов) является наиболее подверженной образованию вмятин как в процессе сооружения, так и эксплуатации.


Гофр - поперечная складка на поверхности трубы. Характеризуется глубиной, которую обычно соизмеряют с толщиной стенки трубы.
Гофры обычно образуются при изоляционно-укладочных работах или при холодном изгибе труб. В редких случаях гофры могут образовываться в процессе эксплуатации МГ на углах поворота трассы при значительных перемещениях криволинейного участка МГ вследствие действия внутреннего давления и температуры и при прохождении трубопровода в слабонесущих грунтах.
К третьему классу относятся дефекты стенок труб металлургического происхождения и образовавшиеся при транспортировке, сооружении и эксплуатации МГ. Дефекты стенок труб металлургического происхождения: - расколы; - расслоения; - закаты; - плены; - рванины; - ликвация; - риски.
Трещины - узкий разрыв металла, направленный к поверхности стенки трубы под углом, близким к 90°. Могут быть сквозными и несквозными.
Расслоение - несплошность металла, ориентированная параллельно поверхности стенки трубы.
Закат - несплошность металла в направлении прокатки листа на значительной длине.
Плена - отслоение металла различной толщины и величины, вытянутое в направлении прокатки и соединенное с основным металлом одной стороной.
Рванина - раскрытый глубокий окисленный разрыв поверхности металла разнообразного очертания, расположенный поверх или под углом к направлению прокатки.
Ликвация - повышенное содержание неметаллических включений. Риска - продольная канавка, образовавшаяся в результате взаимодействия трубы с острыми выступами при прокатке (изготовлении) труб.
Дефекты стенок труб, образовавшиеся при транспортировке труб, сооружении и эксплуатации МГ: - утонения стенки трубы на значительной площади; - локальные повреждения стенки трубы как единичные, так и групповые; - линейно-протяженные дефекты. Утонение стенки трубы на значительной площади обычно вызывается сплошной (равномерной или неравномерной) коррозией трубопровода. Критерием именно такого повреждения является то, что максимальные напряжения в ослабленной зоне не зависят от поверхностных размеров дефекта, а определяются только в зависимости от минимальной толщины стенки в зоне утонения.
В дефектах типа утонений практически отсутствуют пиковые концентрации напряжений.
Локальное повреждение стенки трубы - это дефект стенки с присущими величиными, сопоставимыми с ее толщиной (но не более 5 толщин). К этим повреждениям относится питтинговая коррозия, каверны различного происхождения, забоины.
Линейно-протяженные дефекты - относительно длинные поверхностные повреждения стенок труб, у которых один размер -длина во много раз превышает два других - ширину и глубину. К линейно-протяженным дефектам относятся: - царапины; - задиры.
Царапины - дефект, поперечное сечение того имеет треугольную или трапецевидную форму малой ширины.
Задир - отличается от царапины несколько большей шириной и зазубренными краями.
Происхождение этих дефектов имеет механический характер. Прочность газопровода с подобными дефектами определяется степенью концентрации напряжений в сечении дефекта. Линейно-протяженные дефекты дополнительно характеризуются углом между направлением дефекта и образующей трубопровода. Чем этот угол меньше, тем опаснее дефект. Указанная классификация является качественной, а количественные оценки и расчеты опасности дефектов представлены в специально разработанных методиках по классам дефектов. При изготовлении изделий и сварных конструкций возникают технологические дефекты: состава материала (включения, охрупчивающие примеси и т.д.); плавки и изготовления заготовок (пористость, усадочные раковины, неметаллические включения, закаты, расслоения); механической обработки (ожоги, продиры, заусенцы, риски, трещины, прорезы, избыточная локальная пластическая деформация); сварки (трещины, непровары, поры, подрезы, остаточные сварочные напряжения, изменение структуры зоны термического влияния основного материала и т.д..); термической обработки (перегрев, закалочные трещины, обезуглероживание, избыточные остаточные аустениты и др.); обработки поверхностей (химическая диффузия, водородное охрупчивание, снижение механических свойств и др.); сборки (риски, задиры, смещения кромок свариваемых деталей, несоответствие размеров деталей и др.). Механические, химико-термические воздействия на материалы конструкций во время обработки и сварки вызывают изменения предела прочности, сопротивления хрупкому разрушению, коррозионной стойкости и др. Основными эксплуатационными причинами отказов и повреждений являются: дефекты; нарушение условий эксплуатации; коррозия; износ; наличие перегрузок и непредвиденных нагрузок; неправильное техническое обслуживание и т. д.
Система НК направлена на поиск дефектов, которые могут быть обусловлены нарушением сплошности материалов и деталей, неоднородностью состава материала: наличием включений, изменением химического состава, наличием других фаз материала, отличных от основной фазы, отклонением размеров и физико-механических характеристик от номинальных значений, нарушениями формы и другими причинами.
По влиянию на напряженно - деформированное состояние конструкций дефекты подразделяют на два класса:
· классические дефекты - дефекты, имеющие конечный (ненулевой) радиус закругления в вершине ρ. Основным параметром, характеризующим уровень концентрации напряжений таких дефектов, является теоретический коэффициент концентрации напряжений α σ ;
· трещиноподобные дефекты - дефекты, имеющие острую вершину (с практически нулевым радиусом ρ). Основным параметром, характеризующим уровень концентрации напряжений таких дефектов, является коэффициент интенсивности напряжений К IC .
Для учета данной классификации все дефекты, выявленные при НК, по своим геометрическим параметрам подразделяются на плоскостные и объемные.
Независимо от типа дефектов их разделяют на три вида:
· критические, когда при наличии дефекта использовать продукцию по назначению невозможно или недопустимо (небезопасно);
· значительные, оказывающие существенное влияние на использование продукции и на ее долговечность, но не являющиеся критическими;
· малозначительные, практически не влияющие на использование продукции по назначению и на ее долговечность.
Вид дефекта, в отличие от типа, характеризует степень его влияния на и безопасность использования продукции с учетом ее назначения, т. е. потенциальную опасность рассматриваемого дефекта. Очевидно, что дефект одного и того же типа и размера может принадлежать к дефектам различного вида в зависимости от условий и режимов эксплуатации продукции.
По происхождению дефекты изделий подразделяют на производственно-технологические (металлургические, возникающие при отливке и прокатке, технологические, возникающие при изготовлении, сварке, резке, пайке, клепке, склеивании, механической, термической или химической обработке); эксплуатационные (возникающие после некоторой наработки изделия в результате усталости материала, коррозии металла, изнашивания трущихся частей, а также неправильной эксплуатации и технического обслуживания) и конструктивные дефекты, являющиеся следствием несовершенства конструкции из-за ошибок конструктора.
С точки зрения ремонтопригодности выявляемые при обследовании трубопроводов и других конструкций дефекты подразделяются на: исправимые - устранение которых технически возможно и экономически целесообразно; неисправимые - устранение которых связано со значительными затратами или невозможно.
Наиболее типичные для стальных трубопроводов дефекты, повреждения и несовершенства конструкции, выявляемые при диагностировании, по характеру их появления могут быть подразделены на две основные группы: технологические - дефекты, возникающие в результате строительно-монтажных и ремонтных работ; эксплуатационные - дефекты, возникающие в процессе эксплуатации после некоторой наработки.
Технологические дефекты являются концентраторами напряжений и при длительной эксплуатации могут переходить в трещины и благоприятствовать усилению коррозии стенки трубопроводов.
С целью выбора оптимальных методов и параметров контроля производится классификация дефектов по различным признакам: по размерам дефектов, по их количеству и форме, по месту расположения дефектов в контролируемом объекте, ориентации и т.д.
Размеры дефектов могут изменяться от долей миллиметров до сколь угодно большой величины. Практически размеры дефектов лежат в пределах 0,01 мм - 1 см.
Минимально допустимые размеры несплошностей определяют выбор технологии и параметров НК.
При количественной классификации дефектов различают три случая: одиночные дефекты, групповые (множественные) дефекты, сплошные дефекты (обычно в виде газовых пузырей и шлаковых включений в металлах).
При классификации дефектов по форме различают три основных случая: дефекты правильной формы, овальные, близкие к цилиндрической или сферической форме, без острых краёв; дефекты чечевицеобразной формы, с острыми краями; дефекты произвольной, неопределённой формы, с острыми краями - трещины, разрывы, посторонние включения.
Форма дефекта определяет его опасность с точки зрения разрушения конструкции. Дефекты правильной формы, без острых краёв, наименее опасны, т.к. вокруг них не происходит концентрации напряжений. Дефекты с острыми краями являются концентраторами напряжений. Эти дефекты увеличиваются в процессе эксплуатации изделия по линиям концентрации механических напряжений, что, в свою очередь, приводит к разрушению изделия.
При классификации дефектов по положению различают четыре случая:
· поверхностные дефекты, расположенные на поверхности материала, полуфабриката или изделия, - это трещины, вмятины, посторонние включения;
· подповерхностные дефекты - это дефекты, расположенные под поверхностью контролируемого изделия, но вблизи самой поверхности;
· объёмные дефекты - это дефекты, расположенные внутри изделия;
· сквозные дефекты - это наличие фосфовидных и нитридных включений и прослоек.
По форме поперечного сечения сквозные дефекты бывают круглые (поры, свищи, шлаковые включения) и щелевидные (трещины, непровары, дефекты структуры, несплошности в местах расположения оксидных и других включений и прослоек).
По величине эффективного диаметра (для дефектов округлого сечения) или ширине раскрытия (для щелей, трещин) сквозные дефекты подразделяются на обыкновенные (>0,5 мм), макрокапиллярные (0,5 - 10 -4 мм) и микрокапиллярные (больше 2·10 -4 мм).
По характеру внутренней поверхности сквозные дефекты подразделяются на гладкие и шероховатые. Относительно гладкой является внутренняя поверхность шлаковых каналов. Внутренняя поверхность трещин, непроваров и вторичных поровых каналов, как правило, шероховатая.
Ориентация дефекта влияет как на выбор метода контроля, так и на его параметры.
Опасность влияния дефектов на работоспособность зависит от их вида, типа и количества. Классификация возможных дефектов в изделии позволяет правильно выбрать метод и средства контроля.
Следует отметить, что принятые в руководящей документации нормы отбраковки по результатам НК не гарантируют, что наличие в объекте дефектов с размерами, превышающими допустимые, приводит к критическому снижению работоспособности в процессе эксплуатации. Это связано с тем, что применяемые технологии РК не позволяют уверенно установить тип дефекта и определить его характеристики (кривизна несплошности на всей ее поверхности, глубина залегания, ориентация несплошности в объекте контроля), без чего не удается достичь приемлемой достоверности прочностных расчетов.
Нормирование максимальных размеров дефектов, обнаруженных при НК, имеет смысл только для конкретного объекта (участка объекта) контроля и установленных режимов его эксплуатации, а результаты НК без существенных допущений нецелесообразно связывать с надежностью объекта контроля. В общем случае нормы отбраковки необходимо рассматривать как способ поддержания технологической дисциплины в условиях конкретного производства.
Для оценки влияния дефектов на механические и эксплуатционные свойства объекта контроля используют разрушающие испытания. Эти испытания проводят на сварных образцах, вырезаемых из самого объекта контроля или из специально сваренных контрольных соединений, выполненных в соответствии с требованиями и технологией на сварку изделия в условиях, соответствующих сварке. Целью этих испытаний являются:
· оценка прочности и надежности сварных соединений и конструкций;
· оценка качества основного и сварочного материалов; оценка правильности выбранной технологии; оценка квалификации сварщиков.
Свойства сварного соединения сопоставляют со свойствами основного металла. Результаты считаются неудовлетворительными, если они не соответствуют заданному регламентированному уровню.
Основными испытаниями являются механические испытания по ГОСТ 6996-66, который предусматривает следующие виды испытаний сварных соединений и металла шва:
· испытание сварного соединения в целом и металла различных участков сварного соединения (наплавленного металла, зоны термического влияния, основного металла) на статическое (кратковременное) растяжение, статический изгиб, ударный изгиб (на надрезанных образцах), на стойкость против механического старения;
· измерение твердости металла различных участков сварного соединения и наплавленного металла.
Контрольные образцы для механических испытаний выполняют определенных размеров в соответствии со станартами на определенный вид испытания.
Испытаниями на статическое растяжение определяют прочность сварных соединений. Испытаниями на статический изгиб определяют пластичность соединения по величине угла изгиба до образования первой трещины в растянутой зоне. Испытания на статический изгиб проводят на образцах с продольными и поперечными швами со снятым усилением шва заподлицо с основным металлом. Испытаниями на ударный изгиб, а также ударный разрыв, определяют ударную вязкость сварного соединения.
По результатам определения твердости судят о структурных изменениях и степени упрочения (охрупчивания) металла в результате охлаждения после сварки.
Любой дефект при определенных условиях может инициировать отказ отдельного элемента или всей конструкции. Основной металл и сварные соединения ТП содержат множество различных дефектов, возникающих в процессе изготовления труб, их транспортировки и монтажа на строительной площадке, при эксплуатации и ремонте трубопровода. Так как большинство дефектов имеют макроскопические размеры, они хорошо выявляются современными средствами и технологиями НК.

1.3 Классификация дефектов

Дефект - это любое несоответствие регламентированным нормам. Главной причиной появления дефектов является отклонение рабочего параметра от нормативного значения, обоснованного допуском.

Классы дефектов.

К первому классу относятся:

Всплывшие участки трубопровода (участки магистрального газопровода, потерявшие проектное положение оси в обводнённом грунте с выходом на поверхность воды);

Арочные выбросы (участки магистрального газопровода, потерявшие в процессе эксплуатации проектное положение оси с выходом на дневную поверхность);

Выпучины (участки трубы, выпучившиеся в результате морозного пучения грунтов, обычно при промерзании талых грунтов, вмещающих трубопровод):

а) симметричные;

б) несимметричные (в виде одной полуволны синусоиды);

в) типа "змейка" в горизонтальной плоскости (с двумя и более полуволнами);

Провисы (оголённые участки трубы без опирания на грунт, возникающие, к примеру, в результате карстовых явлений или оттаивания вечномёрзлых грунтов);

Просадки (участки трубы, проседающие при оттаивании вечномёрзлых грунтов).

Ко второму классу относятся:

Овальность трубы (дефекты геометрической формы сечения трубопровода, возникающий в результате превращения начального кольцевого сечения трубы в эллиптическое);

Вмятина (местное изменение формы поверхности трубы, не сопровождающееся утонением стенки);

Гофры (поперечная складка на поверхности трубы, характеризуется глубиной, которую обычно соизмеряют с толщиной стенки трубы).

К третьему классу относятся дефекты стенок труб металлургического происхождения и образовавшиеся при транспортировке, сооружений и эксплуатации магистрального газопровода:

Расслоения;

Закаты (несплошность металла в направлении прокатки листа на значительной длине);

Плены (отслоение металла различной толщины и величины, вытянутое в направлении прокатки);

Рванины (раскрытый глубокий окисленный разрыв поверхности металла разнообразного очертания);

Ликвация (повышенное содержание неметаллических включений);

Риска (продольная канавка, образовавшаяся при прокатке труб).

Дефекты стенок труб, образовавшиеся при транспортировке труб, сооружений и эксплуатаций магистрального газопровода:

Утонения стенки трубы на значительной площади;

Локальные повреждения стенки трубы как единичные, так и групповые;

Линейно-протяжные дефекты:

а) царапины;

б) задиры.

Причины возникновения дефектов труб.

Существующая технология прокатки металла, технология непрерывной разливки стали на отдельных металлургических заводах является одной из причин изготовления некачественных труб.

На трубных заводах входной контроль сырья несовершенен или полностью отсутствует - дефекты сырья становятся дефектами труб.

При очистке трубопроводов скребками-резцами возникают дефекты пластической деформации локальных участков поверхности трубы - подрезы.

Дефект сварного соединения - это отклонения разного рода от установленных норм и технических требований, которые уменьшают прочность и эксплуатационную надежность сварных соединений и могут привести к разрушению всей конструкции.

Наплывы - чаще всего образуются при сварке горизонтальными швами вертикальных поверхностей, в результате натекания жидкого металла на кромки холодного основного металла. Они могут быть местными (в виде отдельных застывших капель) или протяженными вдоль шва.

Подрезы - представляют собой углубления, образующиеся в основном металле вдоль края шва.

Прожоги - это проплавление основного или наплавленного металла с возможным образованием сквозных отверстий.

Незаваренные кратеры - образуются при резком обрыве дуги в конце сварки.

Оценка степени опасности дефектов.

Степень опасности дефектов следует оценивать по критериям статической и динамической устойчивости продуктопроводов. По критерию статической устойчивости следует оценивать опасность классических деффектов, классифицируемых как потеря металла.

По критерию динамической устойчивости следует оценивать опасность дефектов, классифицируемых как локальные концентраторы напряжений в основном металле при повторно-статическом нагружении трубопровода внутренним давлением.

Принятие решения о степени опасности дефекта базируется на заключении о характере, местоположении и размерах, а также на представлениях физики прочности об опасности дефекта такого рода. При этом должна учитываться вероятность правильной классификации дефекта, точность определения его размеров и координат. В случае недостаточной достоверности или точности результатов необходимо осуществить повторный контроль, причем, возможно, другими методами, например, радиографическим, вихретоковым.

Восстановление винтов диспергатора

Для винта диспергатора, работающего в условиях быстродвижущейся коррозионно-активной среды...

Гильотинные ножницы с нижним резом

Дефекты сварных швов и соединений, выполненных сваркой плавлением, возникают из-за нарушения требований нормативных документов к подготовке, сборке и сварке соединяемых узлов...

Дефекты при выполнении сварки

Каждый производственный процесс предполагает определённые отклонения от требований технических норм. Если такие отклонения выходят за пределы установленных допусков для конкретного изделия - это брак, дефект, который должен быть устранён...

Дефекты сварочных соединений

Внешние дефекты Искажение размеров и формы швов; швы имеют завышенные или заниженные размеры...

Дефекты сварочных соединений

Все дефекты сварного шва подлежат обязательному устранению, а если это невозможно, сварное изделие бракуется...

Простейшими точечными дефектами являются вакансии (узлы, из которых удалены атомы) и межузельные атомы (рис.2.1). К точечным дефектам в одноатомных кристаллах следует также отнести примесные атомы различных сортов...

Изменение свойств дислокаций при деформации металлов

В плотноупакованных структурах, в частности в большинстве истинных металлов, в кристаллизующихся в ГЦК или ОЦК решетках, основной механизм диффузионной миграции - вакансионный. В этом механизме элементарный скачок атома...

Изменение свойств дислокаций при деформации металлов

Вакансии образуются: а) в результате флуктуаций энергии при хаотичном тепловом движении атомов; б) при пластической деформации; в) при ядерном облучении металлов, а также при других процессов. Рис. 2.5...

Особенности работы поворотной цапфы машины, ее конструктивные и технологические особенности

К наиболее часто встречаемым дефектам цапфы относится обломы и трещины разной природы возникновения. При возникновении подобного дефекта восстановление цапфы зачастую невозможно из-за его конструктивных особенностей. Как правило...

Проект цеха точного литья производительностью 500 тонн в год

Исправлять дефекты целесообразно если затраты на исправление забракованной отливки меньше стоимость её изготовления вновь. Наружные раковины могут быть заварены. Заварку следует производить методом электросварки...

Проектирование технологического процесса восстановления головки блока цилиндров

Таблица 3 Технические условия на дефектацию и сортировку детали № Наименование дефектов Способ установления дефекта Размеры Заклю- чение Номиналь- ный Допустимый без ремонта 1 Трещина в рубашке...

Способы определения дефектов механизмов и деталей в процессе эксплуатации. Выбор метода ремонта

Обязательным условием ремонта является объективная запись состояния машины в журнале, где регистрируются все работы, выполняемые в период технического обслуживания, с описанием всех изложенных сборочных единиц и деталей, неполадок...

Стойкость изложниц в условиях их эксплуатации на комбинате "Криворожсталь"

В результате научных исследований появились новые резервы повышения стойкости изложниц, особенно против образования трещин. Обнадеживающие результаты получены при эксплуатации изложниц (в том числе и крупных) из чугуна...

Устройство, назначение и принцип действия бурового насоса УНБ–600

Диагностику возможных неисправностей в работе насоса и способы их устранения проводить в соответствии с таблицей 1. Таблица 1...

Разрывная нагрузка -наибольшее усилие, выдерживаемое материалом до разрушения и выражающее его способность воспринимать нагрузку.

Для тканей разрывную нагрузку (абсолютную) обычно выражают в ньютонах (Н) или килограмм — силах (кгс); 1 кгс» ~9,8 Н.

Этот показатель является обязательным для большинства тканей различного волокнистого состава. Интерес к нему объясняется сравнительной простотой его определения; кроме того, разрывная нагрузка тканей позволяет косвенно оценить качественный состав сырья, используемого для выработки продукции, а также степень повреждения материала в процессах заключительной отделки. Например, ткани из дефектной шерсти или недостаточно зрелого хлопка имеют заниженные против норм значения разрывной нагрузки. Пережог, перекрас, неправильные опаливание, беление или отделка термореактивными смолами (несминаемая отделка) тоже приводят к снижению разрывной нагрузки ткани. Поэтому, несмотря на то что ткани, особенно бытового назначения, в процессе эксплуатации обычно не испытывают нагрузок, близких к разрывным, последние широко используют для характеристики механических свойств тканей и нормируют в стандартах.

Разрывную нагрузку часто используют для оценки кинетики изнашивания тканей. На рис. 3 приведены типичные кривые изменения разрывной нагрузки тканей в процессе эксплуатации последних. Как видим, высокое начальное значение разрывной нагрузки еще не определяет поведение ткани в носке. У одной ткани (кривая) начальное значение разрывной нагрузки было больше, чем у другой ткани (кривая). Но в процессе эксплуатации первая ткань изнашивается быстрее, и уже после определенного периода и ее разрывная нагрузка меньше, чем у второй ткани. В связи с этим ткань, которой соответствует кривая, имеет меньший срок носки.

Разрывное удлинение (абсолютное)это разница между длиной образца в момент разрыва и зажимной его длиной до разрыва.

Ткани, имеющие высокое удлинение при разрыве, например шерстяные и из синтетических волокон, обладают, как правило, хорошими эластичностью, несмииаемостью, стойкостью к истиранию и т. п.
Как и разрывная нагрузка, удлинение при разрыве в значительной степени зависит от качественного состава сырья, из которого выработана ткань. При одинаковой разрывной нагрузке лучшей в отношении механических свойств считается та ткань, которая имеет более высокое разрывное удлинение. Механические свойства у ткани, которой соответствует кривая /, лучше, чем у ткани, которой соответствует кривая, так как из — за большего разрывного удлинения работа разрыва (заштрихованная площадь) у нее больше. Поскольку работа разрыва характеризует количество энергии, которое необходимо затратить на разрушение материала, первую ткань можно считать более «прочной», чем вторую.

Разрывную нагрузку и удлинение при разрыве тканей определяют путем испытания трех пробных полосок по основе и четырех по утку/Размеры пробных полосок указаны в табл. 6. При возникновении разногласий испытывают пробные полоски размерами 50X100 мм для шерстяных тканей и 50×200 мм для всех остальных тканей. Заготовки для пробных полосок вырезают из образца ткани с помощью специальных металлических шаблонов. Ширина заготовок 30 или 60 мм, длина должна быть больше зажимной длины на 150 мм. Продольные нити удаляют с обеих сторон заготовок до тех пор, пока рабочая ширина пробных полосок тканей не станет равной 25 или 50 мм.

Согласно ГОСТ 3813 -72, пробные полоски подвергают растяжению до разрушения на разрывных машинах трех типов: с переменной скоростью возрастания нагрузки и деформации, с постоянной скоростью возрастания нагрузки, с постоянной скоростью деформирования. Различие между этими машинами заключается в характере нагружения или деформирования испытуемого материала.
На рис. 5 приведены диаграммы нагрузки и деформации, получаемые на разрывных машинах различных типов. Машины второго и третьего типов считаются более совершенными, так как характер роста нагрузки или деформации испытуемых на них материалов не зависит от особенностей механических свойств последних. Это позволяет более правильно оценивать в сравнении механические свойства различных материалов. Машины первого типа лишены такого преимущества. Например, а показаны диаграммы роста нагрузки и деформации двух тканей. Несмотря на то что конечные результаты испытания этих тканей (разрывная нагрузка и удлинение при разрыве) у них одинаковы, нельзя говорить о том, что механические свойства тканей одинаковы. Вместе с тем машины первого типа более просты в устройстве и эксплуатации.

Пробная полоска ткани заправляется в зажимы. Зажим соединен с рычагом (маятником). Поэтому рассматриваемые машины иногда называют разрывными машинами с маятниковым силоизмерителем, или разрывными машинами маятникового типа. Зажим может опускаться с постоянной скоростью; движение он получает от какого — либо привода, обычно электрического. При движении нижнего зажима усилие через образец передается к верхнему зажиму, и грузовой рычаг начинает отклоняться влево. Нагрузка на образец возрастает пропорционально увеличению угла ср. В момент разрушения пробной полоски стрелка рычага 2 останавливается и на шкале / показывает значение разрывной нагрузки. А по шкале 3 определяют величину удлинения при разрыве.

Сменой груза на рычаге 2 можно изменить диапазон нагрузок, получаемых при испытании.
В СССР серийно выпускается разрывная машина РТ — 250М с маятниковым силоизмерителем, имеющая диапазон нагрузок от 0 до 50 и от 0 до 250 кгс. Заметим здесь, что шкала нагрузок разрывной машины должна подбираться так, чтобы средняя разрывная нагрузка испытуемого образца находилась в пределах 20 -80% максимального значения шкалы.

По ГОСТ 3813 -72, при заправке пробных полосок в зажимы разрывной машины им дают предварительное натяжение путем подвешивания специальных грузов к нижнему концу пробной полоски. Величину грузов предварительного натяжения выбирают в зависимости от размеров пробной полоски и поверхностной плотности испытуемой ткани.

При испытании скорость опускания нижнего зажима разрывной машины должна быть такой, чтобы средняя продолжительность растяжения пробной полоски до разрушения соответствовала 30±5 с для тканей с удлинением менее 150% и 60±15 с для тканей с удлинением 150% и более.

За окончательный результат при определении разрывной нагрузки и удлинения при разрыве принимают среднее арифметическое всех первичных результатов.

Раздирающая нагрузка -усилие (кгс, Н), необходимое для разрыва специально надрезанной пробной полоски ткани. Эта нагрузка характеризует способность тканей выдерживать усилие, которое концентрируется на сравнительно небольшом ее участке, например при надрывах, при жестком закреплении края ткани и т. д.

При определении раздирающей нагрузки (ГОСТ 17922 -72) пробные полоски, вырезаемые из образца -три с поперечным расположением нитей основы и четыре с поперечным расположением нитей утка,размечают по схеме. По линии делают надрез и заправляют образовавшиеся язычки в зажимы разрывной машины по линиям АВ и АС. Расстояние между зажимами устанавливают равным 100 мм, скорость опускания нижнего зажима 100 ±10 мм/мин. При движении нижнего зажима нагрузка через продольные нити передается поперечным и они рвутся в направлении надреза. Разрыв пробной полоски ведут до линии аа. Раздирающую нагрузку ткани подсчитывают как среднее арифметическое из результатов первичных испытаний по основе и по утку.

Обычно раздирающая нагрузка тканей намного меньше разрывной нагрузки. Например, если по ГОСТ 5067 -74 раздирающая нагрузка шелковых и полушелковых плательно — костюмных тканей равна не менее 0,8 кгс, то разрывная нагрузка -не менее 20 кгс.

Для хлопчатобумажных и шелковых тканей, имеющих ворс, в стандартах должна нормироваться прочность закрепления ворса.

Прочность закрепления ворса характеризуется усилием, необходимым для выдергивания из ворсовой ткани одной ворсинки. При определении этого показателя (ГОСТ 3815.3 -77) из образца вырезают пять полосок вдоль основы размерами 20X100 мм. К обоим концам каждой полоски пришивают другую полоску ткани шириной 20 мм и длиной 250 мм. Складывая образующуюся ленту пополам, выделяют у испытуемой полоски ткани ряд ворсинок, которые зажимают в верхнем зажиме разрывной машины для испытания одиночной нити. Нижнюю часть ленты под натяжением 25 гс заправляют в нижний зажим разрывной машины. Расстояние между зажимами 200 мм, скорость опускания нижнего зажима 200 мм/мин. В момент полного выдергивания ворсинок отмечают показания шкалы нагрузок. Ворсинки, оставшиеся в верхнем зажиме, пересчитывают, после чего определяют усилие, необходимое для выдергивания одной ворсинки.

Понравилась статья? Поделиться с друзьями: